
Master Thesis

Big Data to Small Footprints: Predicting Office Operating Carbon
Emissions Using Machine Learning

by

Stan Brouwer
(2671939)

First supervisor: Ronald Siebes
Daily supervisor: Ronald Siebes

Second reader: Second reader’s name

July 15, 2025

Submitted in partial fulfillment of the requirements for
the VU degree of Master of Science in Information Sciences



DECLARATION OF AUTHORSHIP

I, Stan Brouwer, declare that this thesis titled "Big Data to Small Footprint: Predicting Office Operating Carbon Emissions Using Machine
Learning" and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this University.
• Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.
• Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.
• Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I
have contributed myself.

Signed: Stan Brouwer

Date: 11 July 2025

2



Big Data to Small Footprints: Predicting Office Operating Carbon
Emissions Using Machine Learning

Stan Brouwer
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
s.j2.brouwer@student.vu.nl

ABSTRACT
Context. Building energy consumption is influenced by many com-
plex factors, including building characteristics, usage patterns, and
climate. Accurate prediction of energy use intensity (EUI) is essen-
tial to improve energy efficiency and support sustainable building
management.
Goal. This study aims to evaluate and compare the performance
of various statistical and machine learning models in predicting
EUI for office buildings, highlighting the key predictors and the
effectiveness of nonlinear approaches.
Method. We analyze a large data set of office buildings, applying
linear regression, decision trees, and random forest models. We
evaluated the accuracy of the model using multiple performance
metrics and examined the influence of predictors such as operating
hours, heating and cooling degree days, and floor area.
Results. Nonlinear models, especially random forest regression, sig-
nificantly outperformed linear regression, achieving higher predic-
tive accuracy (𝑅2 = 0.65) and lower error rates. Operating hours
and climate variables were identified as the most influential pre-
dictors. Linear models showed limited explanatory power due to
complex, non-linear relationships in the data.
Conclusions. Machine learning methods like random forests better
capture the complexity of building energy use and improve pre-
diction reliability. Future research should incorporate additional
contextual factors and explore advanced modeling techniques to
support more adaptive and precise energy management strategies.

1 INTRODUCTION
Greenhouse gas (GHG) emissions associated with human activities
have already caused 1.1 [0.95-1.20] ° C of global warming above
preindustrial levels [10], leading to irreversible changes in the cli-
mate system. In response, the Paris Agreement [19] has established
goals to limit global warming to well below 2 ° C and preferably
1.5 ° C. However, current policy outcomes fall short: Under existing
commitments, the world is on track to 2.8 ° C of warming by the
end of the century [58, 72]. To avoid this outcome, great reductions
in emissions are required. The UNEP notes that achieving the 1.5 °
C target requires a decrease in current emissions by 42% by 2030
and 57% by 2035 [58].

Corporations are under growing pressure to align their oper-
ations with climate goals. Governments are introducing stricter
regulations, such as the EU Corporate Sustainability Reporting
Directive [13], which requires larger companies to disclose climate-
related risks, greenhouse gas emissions and sustainability. At the
same time, social expectations are shifting. Public awareness and
concern about climate change create reputational incentives for
companies to demonstrate environmental responsibility [30, 80].

Investors also are increasingly valuing environmental, social, and
governance (ESG) factors in their decision-making, favoring orga-
nizations with sustainability strategies [13, 29, 36, 67]. In addition,
legal accountability is on the rise. Landmark rulings such as Mi-
lieudefensie v. Royal Dutch Shell underscores the growing role of
the judiciary in enforcing corporate climate responsibility, further
compelling companies to act.

The role of office buildings. Office buildings present a significant
opportunity to reduce greenhouse gas emissions through improved
energy management [58]. Buildings account for approximately 40%
of total energy consumption and GHG emissions related to energy
in both the US and the EU [28, 73]. Although the global proportion
is lower (between 20% and 40%), it is expected to grow rapidly
with the urbanization and development of new economies [62].
A large portion of this energy use is still derived from fossil-fuel
heating, cooling, or electricity systems, making the sector critical
for decarbonization.

The energy use in building operations alone is estimated to ac-
count for 19% of global GHG emissions. [70] Commercial buildings,
including offices, are particularly energy intensive, often consum-
ing up to three times more energy per square meter than residential
buildings [9]. Despite increasing awareness, energy consumption in
office buildings continues to increase, posing challenges to climate
goals. This highlights the need for better evaluation and manage-
ment of energy performance within the sector [58].

Managing and reducing energy consumption starts with quanti-
fying energy use, which is typically normalized for floor area and pe-
riod and expressed as energy use intensity (EUI; kWh ·m−2 ·year−1

[37, 50]. Generally, there are two methodological approaches to
assess energy performance: physics-based simulations that use
detailed structural and environmental data in combination with
energy simulation tools (EnergyPlus, TRNSYS, ESP-r) to calculate
consumption; or data-driven and statistical models that infer pat-
terns from historical building and environmental data to predict
energy use [65].

Although simulation-based models are widely used in energy
optimization and certification schemes, they are computationally
intensive and often impractical for large-scale or early-stage evalu-
ations. Optimization algorithms relying on simulation tools suffer
from high time overhead, making them costly to scale or apply
across portfolios [6, 68]. In contrast, data-driven models offer a
more scalable alternative, reducing costs and enabling rapid evalua-
tion of energy performance across large datasets [22, 23]. They are
also increasingly used to support design decisions, optimize HVAC
systems, and benchmark energy performance [1, 46]. Importantly,
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classification-based techniques can facilitate the analysis of com-
plex variables such as occupant behavior or usage patterns, which
are difficult to model by simulation [79].

Practical barriers. Although technological solutions such as smart
meters, advanced HVAC systems, and retrofitting exist and are often
cost-effective, their implementation remains limited, and thus the
challenges are informational and economic rather than technical
[81]. Reliable performance data are oftenmissing or not transparent,
preventing markets from operating efficiently [38]. This hinders
investors and tenants from evaluating energy efficiency, reducing
incentives to invest in sustainable buildings.

Transparency initiatives such as the EU Building Energy Perfor-
mance Directive (EPBD), ENERGY STAR, and LEED have improved
the availability of information. Studies show that certified buildings
command rental and sales premiums [24, 32, 49]. However, these
certifications are inconsistent between regions, not always publicly
accessible, and often rely on complex, expert-driven simulations.

Practical constraints further hinder sustainability initiatives. Of-
fice buildings are often multi-tenant and rely on shared energy
meters. Tenants are often charged based on floor area rather than
actual usage. This structure limits the feedback tenants receive
on their actual energy use and undermines incentives to reduce
consumption [43]. At the portfolio level, building owners and real
estate managers struggle to collect and compare energy perfor-
mance data, making it difficult to identify underperforming assets,
comply with ESG mandates, or justify sustainability investments.
Providing performance data has wider economic benefits, reduces
adverse selection, aligns stakeholder incentives, and allows more
targeted, cost-effective policies [3, 35].

Motivation. With increased attention to decarbonization, there
is a growing body of research on energy consumption in buildings.
Much of it focuses on the residential sector, while office buildings
remain relatively understudied. As office buildings have different
characteristics that differentiate them from residential structures,
they require separate analysis.

This research contributes to the scientific literature by applying
ML/statistical techniques to large data sets of more than 7,000
US office buildings. We evaluated different machine learning and
statistical methods that estimate the energy consumption of US
office buildings. Novel is the combination with weather data based
on the location and size of the considered data set.

The study is structured around the following research ques-
tions: 𝑅𝑄1: What are the key characteristics (e.g., building size, age,
number of occupants, operating hours) most strongly determining
energy use in US office buildings? 𝑅𝑄2: How do different modeling
techniques compare in accuracy when used to predict yearly energy
consumption?

By developing and evaluating the precision of predictive models,
this study aims to offer a faster and more scalable approach to sup-
port effective energy management, targeted retrofits, and strategic
decision-making in the commercial real estate sector.

2 BACKGROUND
The energy consumption of buildings, and in particular office build-
ings, contribute significantly to overall energy use and CO2 emis-
sions [70, 75]. Consequently, developing accurate models for the
prediction of energy consumption has become crucial to optimize
energy consumption, reduce costs, and promote sustainability in
the office environment [48]. Scholars have recognized the impor-
tance of energy prediction in achieving energy efficiency and cost
savings since the mid-1980s [12].

Drivers of office building energy usage. Energy consumption in
buildings is influenced by many physical, operational, behavioral,
and environmental variables. Physicists and engineers tend to create
physical models that calculate heat dissipation and radiation, while
the data-driven domains use big data approaches.

From an architectural perspective, studies have emphasized the
importance of building envelope properties such as insulation, wall-
to-window ratio, air tightness, HVAC system efficiency, and the
impact of passive design features (orientation, shading, thermal
mass) on energy demand [62, 71].

In behavioral sciences, researchers have identified occupant be-
havior and organizational culture as significant drivers of variations
in energy use. Research indicates that user habits such as thermo-
stat settings, window opening, and equipment usage can lead to
large differences in energy performance, even among technically
equivalent buildings. This “performance gap” is often attributed to
behavioral unpredictability[34, 63]).

Empirical studies have attempted to quantify the relative impact
of different energy consumption factors, often using regression
models or machine learning. Most of the variables investigated are
discussed below.

Floor area. Almost all analyses find that larger offices use more
energy, roughly in proportion. A nationwide Korean study reports
that floor area alone explains approximately 90% of the variation
in office energy usage (𝑅2 = [0.89 - 0.91]) [40]. Often, regression
models include the floor area. Based on a New York City office
data set, Kontokosta reports that each additional𝑚2 of floor area
raised the yearly energy use intensity by 0.20 𝑘𝑊ℎ/𝑚2 (p < 0.05)
[42]. Although energy usage scales roughly linearly with floor
area, it is hypothesized that larger office buildings benefit from
economies of scale and have lower energy consumption per floor
area (energy intensity). Kim & Kim [40] found that the coefficient
of determination between total floor area and energy consumption
was higher with a quadratic model for large office buildings than
with a linear model, indicating possible scale benefits. However,
the authors also note that the linear regression model performed
better for smaller offices and suggest the application of segmented
regression. These interactions could be further complicated by the
interactions between building age, energy rating, and building age
and size as newer buildings tend to be better insulated and larger.
In absolute terms, the pattern is clear: Larger buildings generally
use more energy.

Number of occupants. Studies consistently find that the intensity
of energy increases with the number of people inside a building. By
including workers per area as a positive factor, Kontokosta found
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that adding one worker per𝑚2 increased annual energy usage with
about 3.07 𝐾𝑊ℎ/𝑚2 (p > 0.01) [42].

Operating hours. The longer an office is used per week, the more
energy it consumes. Regression studies often include operating
hours as a predictor. For example, Sharp (1996) identified operating
hours as a strong driver of energy usage. Sharp found that each
additional open hour per week corresponded to an increase in
energy use of 1.41 𝑘𝑊ℎ/𝑚2 (p < 0.05), approximating the reported
1.94 𝑘𝑊ℎ/𝑚2 (p <0.0001) from the ENERGY START RATING TEAM
(2019) technical report [26, 66]

Building age. Many regressions find that newer offices use more
energy per area. Kontokosta found a negative correlation of energy
use with age: offices older than 80 years used approximately 30%
less energy per area than the average office [42]. This trend is
also observed in a study in the UK, reporting that the intensity
of electricity is higher in recently built offices [? ] The Building
Energy Research Center of Tsinghua University (2023) attributes
the observed trend of increased intensity of the energy of office
buildings mainly to the increasing prevalence of air conditioning
systems [9]

Weather influences. Weather significantly affects the use of en-
ergy in commercial buildings, which must be taken into account.
The simplest approach is to consider degree days: summing the
differences between outdoor temperature and a base temperature,
loosely corresponding to the temperature gradient between indoor
and outdoor temperatures [47]. More refined methods fit regression
models of energy and weather variables. With the rise of machine
learning, more advanced methods such as neural networks, ran-
dom forests, etc. can model non-linear responses to temperature
and other factors. Each approach to considering the influence of
weather uses common meteorological features, such as tempera-
ture, humidity, solar radiation, and wind speed, to estimate what
the energy use would have been under a reference climate. By re-
moving weather effects, these models enable better year-over-year
or between-building comparisons [44]

The most common normalization method for adjusting for the
effects of weather is the heating and cooling degree-day (HDD,
CDD) method [2], although the methodology for normalizing for
other variables is similar. Degree days represent the total positive
or negative differences between a set temperature and the average
temperature for a given period of time [7], which has been specified
as 18.3 ° C (65 ° F) in the US. Kissock et al. discussed the Variable
Base Degree-Day (VBDD) method, in which the most optimal base
temperature that provides the best statistical fit is calculated. In the
basic degree-day method, a regression model correlates energy use
with degree days, which is then evaluated on its𝑅2 value. For VBDD,
multiple models are developed with different base temperatures,
and the model with the highest 𝑅2 value is selected [41].

3 METHODS
This study develops predictive models for the annual EUI of of-
fice buildings using building characteristics and climate data. The
methodology is structured into four main sections: are organized
into four main sections: Data Collection & Preprocessing, Feature

Selection, Model Development, and Model Evaluation. An a priori
significance level of 𝛼 ≤ 0.05 was applied throughout.

3.1 Data collection & preprocessing
Data were compiled from 26 publicly available datasets that contain
annual energy consumption and associated building characteristics
[4, 5, 14, 15, 17, 18, 20, 25, 31, 33, 45, 52–57, 59–61, 64, 69, 76? –78].

Only records explicitly labeled as office buildings were retained.
Further filtering ensured inclusion of entries with positive and non-
missing values for the following variables: site energy use (defined
as the total annual site energy consumption in 𝑀𝑊ℎ), floor area,
year built, energy source indicators and location (city or state).

All imperial units were converted to SI units except for time and
energy use (reported in years and𝑀𝑊ℎ for interpretability). The
energy use intensity was calculated as the energy use at the site
divided by the area of the floor.

The heating degree days and the cooling degree days were
sourced from the National Weather Service Climate Prediction Cen-
ter, which provides aggregated monthly degree day statistics for
359 major US cities [51]. The building locations were matched with
city-level climate data; If city data were unavailable, the weighted
average of the state population was applied. The final data set in-
cludes 32,686 yearly observations in 7,226 unique office buildings,
spanning 2010 to 2023.

3.2 Feature selection
The predictor variables were initially assessed for compliance with
the assumptions of normality, homoskedasticity, and independence.
Distributions were visually inspected using histograms and Q-Q
plots. The z-values of the skewness and kurtosis were calculated,
with ±2 as the threshold for normality. Shapiro-Wilk’s test was per-
formed on random samples (n=2,000 per variable) to mitigate sensi-
tivity to large sample sizes (Field, 2009). For non-normal variables,
log-transformations were applied and reassessed. Heteroskedastic-
ity was evaluated with Levene’s test.

3.3 Correlation analysis
The association between candidate predictors and yearly EUI was
examined using Pearson’s correlation coefficient (PCC) or Spear-
man’s rho in the case of nonnormality. Cohen’s (1988) guidelines on
the interpretation of correlation coefficients served as a reference,
where correlation values of r = 0.1, 0.3 and 0.5 indicate small, mod-
erate or high correlation. However, it should be repeated that the
interpretation of the coefficients ultimately depends on their con-
text and purpose, and given the relatively large sample size in our
dataset (n > 30,000), even relatively minor correlation coefficients
can achieve statistical significance and reflect real associations [16].

3.4 Multicollinearity assessment
An intervariable correlation matrix and Variance Inflation Factors
(VIF) were calculated to detect multicollinearity. Variables with a
VIF greater than 5 were considered for removal or combination to
ensure model stability.
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3.5 Development of predictive models
3.5.1 Multiple linear regression (OLS). A simple linear parametric
model was developed to predict the energy use of buildings only
with electricity. A separate multivariate linear regressionmodel was
developed to predict both the electric and fuel energy use for mixed-
source buildings. The assumptions of normality, homoskedasticity
and independence were evaluated by visual inspection of the his-
togram and QQ plots, and with Shapiro-Wilk and Levene’s tests.
The general form was as follows:

EUI𝑖 = 𝛽0 + 𝛽1 · FloorArea𝑖 + 𝛽2 · YearBuilt𝑖 + 𝛽3 · OperatingHours𝑖
+ 𝛽4 · CDD𝑖 + 𝛽5 · HDD𝑖 + 𝜖𝑖

With:
• EUI𝑖 : Energy Use Intensity of building 𝑖 .
• 𝛽0: Intercept term.
• 𝛽1: Coefficient for floor area.
• FloorArea𝑖 : Floor area of building 𝑖 .
• 𝛽2: Coefficient for year built.
• YearBuilt𝑖 : The year building 𝑖 was constructed.
• 𝛽3: Coefficient for operating hours.
• OperatingHours𝑖 : Building operating hours 𝑖 .
• 𝛽4: Coefficient for cooling degree days.
• CDD𝑖 : Cooling Degree Days at the building’s location.
• 𝛽5: Coefficient for heating degree days.
• HDD𝑖 : Heating Degree Days at the building’s location.
• 𝜖𝑖 : Error term.

3.5.2 Decision tree regression. A decision tree model was devel-
oped to capture potentially non-linear relationships between build-
ing characteristics and energy use. Unlike linear models, decision
trees recursively divide the data into smaller groups based on ’de-
cision rules’ that maximize the difference in the outcome variable
between branches. This allows the model to ‘learn’ threshold effects
and interactions that might be difficult to represent parametrically.
To tune the model and prevent overfitting, key hyperparameters,
such as the maximum number of splits (tree depth), the minimum
number of samples required to split a node, were optimized using
5-fold cross-validation. In this approach, the training data are split
into five equal subsets (folds). The model is trained on four sets
and validated on the remaining set, the process being repeated five
times with rotation in order for each set to be used as a validation
set exactly once. The average performance across the iterations
provides a robust estimate of how well the model generalizes to
new data.

Before hyperparameter tuning, we randomly split the data set
into 80% training data and 20% testing data, which were not used
for the 5-fold cross-validation. We tested each combination of hy-
perparameters with tree depths ranging from 2 to 20 and minimum
samples per split ranging from 2 to 20. The accuracy of the model
was evaluated using the mean absolute error (MAE), which mea-
sures the average absolute difference between predicted and actual
annual energy values. The hyperparameter combination with the
lowest average MAE across validation folds was selected. The final
decision tree was then re-trained on the full training dataset using
this optimal configuration and tested on the unseen holdout set.

3.5.3 Random forest regression. To improve prediction accuracy
and mitigate overfitting observed in single decision trees, a random
forest model was implemented [27]. This ensemble method builds
multiple decision trees using bootstrapped samples and random fea-
ture selection, averaging their predictions to enhance generalization.
Hyperparameter tuning followed the same 5-fold cross-validation
and holdout approach. Feature importance metrics were extracted
to interpret predictor influence.

3.6 Model evaluation
Linear regression models were evaluated using 𝑅2, adjusted 𝑅2,
MSE, RMSE, and MAE on the complete dataset. Nonlinear models
were assessed on the 20% holdout set to provide unbiased estimates
of predictive performance.

Evaluation metrics include:

EVALUATION METRICS
Evaluation metrics include:

• Root Mean Squared Error (RMSE): Square root of the
average squared differences between predicted and actual
values, penalizing larger errors [39].

• Mean Absolute Error (MAE): Average absolute difference
between predictions and observations, providing a unit-consistent
error measure.

• Mean Absolute Percentage Error (MAPE): Average per-
centage deviation between predictions and actual values,
enabling scale-independent comparison [21].

• MeanBias Error (MBE): Average bias indicating systematic
over- or underprediction.

• Coefficient of Variation of RMSE (CV_RMSE): RMSE
normalized by the mean of observed values, allowing com-
parability across datasets [11].

• Coefficient of Determination (𝑅2): Proportion of variance
in the dependent variable explained by the model.

Where:
• 𝐴𝑡 = actual value
• 𝑃𝑡 = predicted value
• 𝑛 = number of observations
• 𝐴 = mean of actual values

4 RESULTS
4.1 Statistics
The data set considered contained 32,686 valid yearly observations
in 7,226 unique office buildings, with observation dates ranging
from 2010 to 2023. The descriptive statistics are reported in Table 1.

The results of the normality tests are presented in Table 2. In
combination with the visual inspection of the histograms and Q-
Q plots it was assumed that none of the variables demonstrated
normality.

4.2 Feature selection
The correlation analysis (Table 3) revealed a strong correlation
between the number of people and floor area (𝑟 = 0.88), both
showing VIF values greater than five (5.74 and 5.34). Due to this
multicollinearity and the theoretical relevance of floor area to EUI
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(e.g., surface-to-volume ratio effects), the number of people was
excluded from linear models. After removal, all VIFs dropped below
5 (Table 4).

4.3 Linear regression model
The linear regression results are presented in Table 5. Although all
predictor variables in the model reach statistical significance, the
predictive power of linear regression is low (𝑅2 = 0.09). Operating
hours is by far the strongest predictor. As expected from energy
models, HDD and CDD significantly influence the intensity of
energy use. In line with [42], newer buildings are slightly more
energy intensive.

4.4 Model comparison
The Random Forest model clearly outperformed both the linear
regression and the decision tree models across all metrics (Table
6). It achieved the highest coefficient of determination (𝑅2 = 0.65),
indicating that it explains approximately 65% of the variance in the
building energy use intensity, a substantial improvement over the
Linear Regression (𝑅2 = 0.09) and Decision Tree (𝑅2 = 0.25). The
Random Forest also had the lowest errors: its 𝑅𝑀𝑆𝐸 (0.08) and𝑀𝐴𝐸
(0.05) were significantly smaller than those of linear regression
(𝑅𝑀𝑆𝐸 = 0.02; 𝑀𝐴𝐸 = 0.09) and the decision tree (𝑅𝑀𝑆𝐸 = 0.12;
𝑀𝐴𝐸 = 0.08), suggesting better predictive accuracy and precision.
The MAPE of 23.63% indicates that, on average, the predictions
deviated from the actual values by about 24% for the random forest
model, which is considerably better than the Linear Regression
(44.70%) and the Decision Tree (39.60%).

The𝑀𝐵𝐸 was near zero for all models, with the Random Forest
showing a slight negative bias (-0.005), implying a small tendency
to underpredict but overall negligible.

Finally, the Coefficient of Variation of RMSE (𝐶𝑉𝑅𝑀𝑆𝐸), which
normalizes error by the mean of the response variable, was lowest
for the Random Forest (0.31), further confirming its superior relative
performance.

5 DISCUSSION
This study aimed to evaluate the performance of predictive mod-
els for building energy use intensity (EUI) by evaluating multiple
statistical and machine learning approaches on a large dataset of
office buildings. The predictor variables deviated from normality
and thus linear regression oversimplifies the intricate relations
between predictor and outcome variables. Although statistically
significant among predictors, the explanatory power of the linear
regression was low (𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.09). This aligns with the known
complexity of the factors that influence energy use, which linear
models may not fully capture. Operating hours emerged as the
most influential predictor, underscoring the importance of building
utilization patterns in energy demand. Additionally, HDD and CDD
significantly affected EUI, highlighting the role of local climate in
energy consumption patterns.

Operating hours were the most influential predictor in the linear
model, with a 1.35𝐾𝑊ℎ increase per additional operating hour per
week. This is closely aligned with the findings reported by Sharp
and ENERGY STAR, who identified operating hours as major driver
of energy use [26, 66]. Additionally, HDD and CDD significantly

affected EUI, repeating the influence of local climate conditions.
The observed positive coefficient for year built suggests that newer
buildings tend to consume more energy per area, a trend also ob-
served by others, likely caused by the growing prevalence of energy
intensive HVAC systems in modern offices [9, 42]

While floor area is frequently reported as the single most pow-
erful predictor of total energy consumption, its coefficient in this
analysis ( 0.15𝐾𝑊ℎ/𝑚2) is somewhat lower than those reported
in other work (e.g., Kontokosta’s 0.20 kWh per m2) [42]. This may
reflect differences in modeling energy use per area rather than total
consumption, as well as interactions with other variables such as
occupancy and building age. In particular, the coefficient for the
density (0.07 kWh · person−1 ·m−2 positive but smaller in magni-
tude compared to earlier research (3.07 kWh · person−1 ·m−2 [42],
possibly due to differences in scaling, normalization, or building
operational characteristics in this dataset.

Nonlinear models, particularly the random forest regression,
outperformed linear regression and the decision tree model. The
Random Forest’s superior 𝑅2 (0.65) and lower error metrics (RMSE,
MAE, MAPE) demonstrate how it captures threshold effects that the
other models cannot. We speculate that the random forest performs
better than the decision tree due to its ensemble nature which
reduces overfitting risks inherent to single decision trees [8]

The predictive power of our linear regression model (𝑅2 = 0.09)is
lower than that reported by Kontokosta (𝑅2 = 0.20) [42]. This
performance difference may be due to the narrower geographic
scope of Kontokosta’s study, which focused solely on New York
City buildings, or the inclusion of a larger number of predictor
variables in their model.

Finally, while floor area is the most influential predictor of a
building’s total energy use, models generally achieve much higher
predictive performance when estimating total consumption rather
than EUI. For example, Sharp reports predictive performance rang-
ing between 𝑅2 = 0.74 and 𝑅2 = 0.88 for models predicting total
energy use [66]. In contrast, we deliberately chose to predict energy
use per unit area to facilitate comparisons between buildings of
different sizes, recognizing that this approach may inherently limit
the overall fit of the model but provides more actionable insights
into relative energy performance.

6 LIMITATIONS (OR THREATS TO VALIDITY)
This study has several limitations that may affect the interpretation
and generalizability of the findings. Following the classification by
Wohlin et al. [74], we organize these threats to validity as follows.

6.1 Internal Validity
Internal validity refers to whether the observed effects can confi-
dently be attributed to the predictors rather than other factors. One
threat is the potential for unobserved confounding variables, such
as building envelope characteristics, HVAC system efficiency, or
occupant behavior beyond the reported hours and density. While
the models included climate factors (HDD and CDD) and utiliza-
tion patterns (operating hours, occupant density), other relevant
variables were not available in the dataset. This limitation may bias
the estimated relationships.
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Another internal threat is measurement error. Some variables,
such as floor area and operating hours, may have been reported in-
consistently across data sources. We conducted basic outlier screen-
ing and removed clearly implausible values, but residual inaccura-
cies may remain.

6.2 External Validity
External validity concerns the generalizability of our results to other
contexts. Our dataset includes office buildings only from within the
US, and thus does not represent office buildings globally, where reg-
ulations, building codes, construction practices, cultural practices
and climate differs. Accordingly, results should be interpretated
with caution and future work should include greater topological
diversity.

6.3 Construct Validity
Construct validity relates to whether the variables adequately cap-
ture the intended concepts. As energy demands are well defined
and quantifiable, most concerns go out to the climate variables.
HDD and CDD aggregate weather variation but do not capture the
full effect of the weather, such as influences caused by humidity,
sunshine or rain. Although these variables are commonly used
proxies in building energy studies, they may imperfectly represent
the underlying constructs.

6.4 Conclusion Validity
Conclusion validity refers to whether the statistical conclusions
are credible. One issue is the non-normality of predictor distribu-
tions, which limits the suitability of linear regression. We addressed
this by applying Random Forest regression, which does not as-
sume linearity or normality and demonstrated substantially higher
explanatory power (𝑅2 = 0.65). Nonetheless, model performance
metrics may be optimistic due to the absence of external validation
on unseen datasets. To reduce overfitting risk, we used out-of-bag
estimation and cross-validation, but future work should validate
models on truly independent samples.

7 CONCLUSION
This study compared different models to predict building energy
use and showed that nonlinear methods like random forest clearly
outperform simple linear regression. Using a large dataset, we found
that factors like operating hours and climate have a great influence,
and that linear models miss some of the complexity in energy pat-
terns. Our work helps improve prediction accuracy and highlights
the value of capturing nonlinear effects and local climate influences.

Future research could explore more advanced machine learning
approaches and include more contextual data to build models that
adapt better to different building types and locations, ultimately
supporting smarter energy management.
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Table 1: Descriptive statistics of building dataset variables

Variable Unit N Mean Median Mode SD IQR Min Max

id categorical 32,686 – – PM1030273 – – – –
year year 32,686 2018.03 2019 2020 3.06 4 2010 2023
floor_area m2 32,686 24,121.99 10,866 5,574 36,099.34 20,437.75 80 427,412
year_built year 32,256 1959.99 1969 1984 36.40 62 1,726 2022
number_of_people number 11,847 812.93 290 100 1,390.71 677 1 14,673
occupant_density occupants/m2 11,847 230.88 213.44 213.68 166.44 121.70 0.554 5,515.72
operating_hours hours/week 11,942 67.90 65 65 26.16 16 0.61 168
energy_star_rating scale 29,216 68.21 75 83 24.10 30 1 100
electric_eui MWh 32,686 3,873.73 1,554.67 117,771.78 7,362.82 3,237.91 0 158,361.14
fuel_eui MWh 32,686 2,167.72 719.96 0 5,577.84 1,399.74 0 122,015.35
site_eui MWh 32,550 6,054.90 2,450.57 177,818.08 11,798.23 4,545.35 13.52 251,713.44
cooling_dd CDD 32,686 1,183.59 1,156 1,156 444.93 625 9 3,017
heating_dd HDD 32,686 4,033.47 4,195 2,374 1,413.06 2,656 684 8,650
energy_intensity MWh/m2 32,550 0.245 0.211 0.657 0.168 0.128 0.00375 3.143

Table 2: Descriptive statistics of building dataset skewness, kurtosis, and normality tests

Variable Z_Skewness Abs_Skewness Z_Kurtosis Abs_Kurtosis Shapiro_p Levene_p

year -59.32 0.80 -4.07 0.11 1.31E-31 2.09E-132
floor_area 289.93 3.93 785.64 21.29 3.09E-56 9.88E-33
year_built -27.08 0.37 -27.45 0.75 9.08E-28 0.0063
number_of_people 161.62 3.64 388.31 17.48 2.96E-57 2.39E-107
occupant_density 481.48 10.84 6448.35 290.24 3.79E-43 5.42E-06
operating_hours 100.98 2.26 135.88 6.09 1.80E-48 6.81E-07
energy_star_rating -74.06 1.06 16.09 0.46 6.39E-35 0
electric_eui 493.09 6.68 2725.00 73.84 1.69E-60 1.61E-181
fuel_eui 631.92 8.56 4115.02 111.51 1.14E-65 3.46E-299
site_eui 478.76 6.50 2407.65 65.38 3.64E-61 9.48E-269
cooling_dd -1.31 0.02 12.45 0.34 1.02E-16 4.64E-42
heating_dd -28.21 0.38 -24.05 0.65 8.49E-23 8.77E-223
energy_intensity 371.90 5.05 1917.26 52.06 1.38E-47 0

Table 3: Correlation matrix of selected building variables

Variable operating_hours occupant_density heating_dd cooling_dd year_built floor_area

operating_hours 1 0.0861 -0.0361 0.0321 0.0845 0.1463
occupant_density 0.0861 1 -0.0537 0.0879 0.0107 0.0454
heating_dd -0.0361 -0.0537 1 -0.0925 -0.2929 0.0858
cooling_dd 0.0321 0.0879 -0.0925 1 -0.1396 0.1034
year_built 0.0845 0.0107 -0.2929 -0.1396 1 0.0867
floor_area 0.1463 0.0454 0.0858 0.1034 0.0867 1
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Table 4: Variance Inflation Factors (VIF) for building variables

Variable VIF

operating_hours 1.032
occupant_density 1.018
heating_dd 3.986
cooling_dd 4.074
year_built 1.185
floor_area 1.179

Table 5: Regression coefficients and statistics

Term Estimate Std. Error Statistic p-value

(Intercept) -0.9795 0.1089 -8.997 2.78E-19
operating_hours 0.00135 6.12E-05 22.00 1.12E-104
occupant_density 6.97E-05 1.05E-05 6.66 2.96E-11
heating_dd 3.52E-05 5.29E-06 6.66 2.86E-11
cooling_dd 7.13E-05 1.01E-05 7.09 1.40E-12
year_built 0.00045 5.28E-05 8.59 9.90E-18
floor_area 1.53E-07 4.00E-08 3.83 1.31E-04

Table 6: Performance metrics of different models

Model R_squared MSE RMSE MAE MAPE MBE CV_RMSE

Linear_Regression 0.0894 0.0170 0.1305 0.0862 44.70 -0.0060 0.4946
Decision_Tree 0.2495 0.0141 0.1189 0.0783 39.57 -0.0031 0.4507
Random_Forest 0.6532 0.0065 0.0806 0.0477 23.63 -0.0048 0.3055
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